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Abstract-Considering arbitrary stress, strain or displacement functionals specified over a domain
ofan elastic, homogeneous and isotropic body, their invariance is proved for the case of translation,
rotation and scale change of an arbitrary domain within the body. The assosciated class of path­
independent integrals is derived. It is shown that sensitivity analysis with respect to translation,
rotation or expansion of defects can be perfonned by using these path-independent integrals.

I. INTRODUCTION

The present paper discusses a new class of conservation rules which constitute an extension
of the class considered by Eshelby[l, 2], Giinther[3], Knowles and Sternberg[4], Gol~b­

iewska-Herrmann[7], Oelph[9], Rice[12] and Bui[14] for linear and nonlinear elasticity.
Whereas the previous rules were associated with the potential or complementary energy
variation due to translation, rotation or scale change of the body, the present analysis is
concerned with an arbitrary functional of stress, strain or displacement. Similar to the
Eshelby[l, 2] or Budiansky and Rice[l3] interpretation, the variation of respective func­
tionals can be interpreted as that corresponding to translation. rotation or size variation of
inhomogeneities within the body. Therefore the derived conservation rules can find appli­
cation in identification problems where the location and size of defects are to be determined
for some mechanical measurements, or in studying the variation of global or local body
response due to variation ofposition and size ofdefects such as cracks, voids and inclusions.
The general formulation of such a sensitivity analysis problem was presented in previous
papers by Dems and Mr6z[15, 16], and here this analysis will be extended by discussing
three types of path-independent integrals and their interpretations.

In discussing the conservation rules, Knowles and Sternberg[4] demonstrated that such
laws follow from Noether's theorem[6] on invariant variational principles combined with
the principle of stationary potential energy. In our case, the functionals considered do not
possess this stationarity property and therefore the derived conservation rules are not
directly generated from Noether's theorem,t thus constituting a new class of rules. The
concept of primary and adjoint systems will be used and the conservation rules will be
expressed in terms of stress and strain fields of both systems. A somewhat similar idea of
introducing adjoint variables was discussed recently by Herrmann[ll] and Oelph[IO] who
considered a nonlinear creep problem for which an energy stationarity principle does not
exist. In particular, it will be shown that bilinear functionals of primary and adjoint
variables can also be considered within the considered class of functionals. Since the local
displacement or stress components can be expressed as bilinear functionals, their variation
can be derived through the use of path-independent integrals. The conservation rules for
the mutual potential energy of two e'quilibrium states were discussed by Chen and Shield[l8]
and applied in fracture mechanics for the determination of stress intensity factors K 1

, K II

t They can be derived from Noether's theorem by considering augmented functionals which take into account
the equilibrium and compatibility equations of the body.
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738 K. DEMS ASD Z. MROZ

in two modes. The same problem was reanalysed by Bui[19], who proposed an alternative
method of solution using the associated path-independent integrals.

The conservation rules in elastodynamics were discussed by Fletcher[5], whereas
Francfort and Gol~biewska-Herrmann[8]derived the conservation laws in thermoelasticity
using the convolution products of primary and adjoint states. It can be shown that the
present approach can easily be extended to elastodynamics and to time-dependent problems,
but in the present paper we limit our analysis to the case of elastostatics.

In Section 2, the general expression for variation of arbitrary volume or surface
integrals of stress, strain and displacements due to boundary variation will be derived, and
the concept of an adjoint body will be introduced following the previous works by Dems
and Mr6z[15, 16]. In Section 3, the respective conservation rules will be proved for the case
of linear elasticity and small strain theory. In Section 4, the transition to conservation laws
discussed in Refs. [1-4, 14, 18] will be performed, whereas in Section 6 some possible
applications will be indicated.

2. VARIATION OF VOLUME AND SURFACE INTEGRALS DUE TO BOUNDARY VARIATION

Consider a linear elastic body with surface tractions TO specified on its boundary
portion ST and displacements UO prescribed on the portion Su, where S = STU Su denotes
the boundary of the body. We shall discuss the variation offunctionals

or

G2 = f¢(a,u) dV+fh(T,u) dS

(I)

(2)

specified over the body domain of volume V, associated with the variation of its boundaries.
Here t/!(u, u), ¢(a, u) and h(T, u) are continuous and differentiable functions of their argu­
ments. The stress, strain and displacement fields are denoted by u, a and u, where u(x) is a
continuous field and u(x), a(x) are piecewise continuous fields. The particular case when
t/!(u, u) = t/!,(U)+t/!2(U), h(T, u) = h\(T)+h2(u), ¢(a, u) = ¢,(a)+¢iu) was discussed in
previous papers[15,16]. We assume this particular case in Section 3 when considering
rotation and scale change of body domain.

The variation of body shape is conceived as the transformation process specified by
the transformation field tp(x) mapping the material points from an initial to a transformed
configuration, P -+ P,: X, = X + tp. In this paper, we shall restrict our analysis to an infini­
tesimal transformation c5tp(x) from the assumed configuration and derive the formulae for
variation of the functionals G, and G2 associated with this transformation. If x· denotes
the position of a point P, initially placed at x, after infinitesimal variation c5tp(x), we have

(3)

and the variations of displacement, stress and strain fields are expressed in a fixed reference
system as follows:

(4)

where c5u, c5i and M denote the variations at the initial configuration of the body, and
subscripts following commas denote partial derivatives with respect to coordinates of the
Cartesian system. Clearly, the variations bu, bi, M can be determined by considering an
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incremental boundary value problem which accounts for the variation of boundary con­
ditions due to the boundary surface transformation. The variations of surface tractions and
of volume and surface elements are, cf. Ref. [16},

1JT;(x) = 1JTj (x)+ (uijnjn/-Ui/)nk1Jcpk./+Ujj,knj1JCPb

<5[d V(x)} = 1J<pu d V,

<5[dS(x)) = (<5k/-nkn/)1Jcpk,l,

(5)

where n denotes the unit normal vector to the boundary surface.
In view of (5), the variation of the functional G 1 corresponding to an infinitesimal

transformation of the body domain is expressed as follows:

(6)

The expression for oG t contains the variations 1Ju(x), M(x) and <5f(x), which should be
determined from an additional boundary-value problem within the unperturbed domain
which accounts for modification of the boundary conditions on S. This modification
depends on a form of boundary variation. In fact, in view of (5), on ST and Su we have

(7)

Assuming, for instance, configuration-independent loading and support conditions, we
have on = ouf = 0 and eqns (7) provide the values of oTf and ouf on Sr and Su when
boundary modification occurs, thus

(8)

and (8) provide new boundary conditions for a problem of determining ou(x), <5i(x), <5D'(x)
within the body.

Such a direct approach may become impractical in cases where the form of boundary
modification changes and numerous solutions are required in order to determine variations
M and ou. An alternative approach used in sensitivity analysis requires introduction of an
adjoint body and one solution of a boundary-value problem for this body. Following Refs.
[15, 16), consider the adjoint elastic body of the same shape and material stress-strain
relations, but satisfying the boundary conditions

ah
Tao=- on ST,au

a ah Su 0=_ OT on u' (9)

and with imposed body force and initial strain fields

fa = iJl/J,
au

. ol/J . h' V6' =- Wit In .0(1
(10)

Denoting the stress within the adjoint body by tlr
, its total strain field aa can be presented

as a sum, cf. Fig, 1

(11 )
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Fig. I. Decomposition of strains and stresses in the adjoint body.

and is compatible with the displacement field ua
• The stress field (1' is related to s' by Hooke's

law, (1' = D' s' = D (sa -s,), and satisfies both equilibrium and boundary conditions

div (1' + fa = 0 within V, (1' • n = Tao on S T' (12)

whereas the displacement field uU satisfies the boundary conditions uU = UUo on Su. In view
of (9)-(12), the first two terms of (6) can be transformed as follows:

fe~'M + ~~ 'bii) dV= f(Si'M+fa'bii) dV

= f(sa'M-s"M+fa'15ii) dV

= frsu. 15a- «(1' ·be-fa. bii)] dV

= fua
• 15f dS - fT"' bii dS,

(13)

where the following Betti's relations are applied: s'· M = s'· D' c5S = (1" 15&, and D is the
elastic stiffness matrix of both the primary and adjoint bodies. Using (13), the expression (6)
for bG I can be presented in the form

(14)

f( iJh a)-o+ iJT; + Ui 15Ti dST ,

where the local variations bii? on Su and c5T? on Sr are specified by (7). Let us note that
c5u? and c5r? are known on the boundary portions S. and Sr. The expression (14) for c5G ,
now depends on stress and displacement fields of both the primary and adjoint bodies.

The variation of the functional G2 specified by (2) is expressed similarly as in the
previous case. Introducing the adjoint body subjected to the boundary conditions specified
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by (9) and with the initial stress and body force fields 0", fa within V, such that

741

we obtain

, D ' 04>
(I' = _£' =-,

Of:
fa == 04>

au'
(15)

+f(:;j + uf)8tPdSr .

(16)

The expressions (14) and (16) now constitute the foundation for our subsequent analysis,
in which the variations of Gland G2 associated with translation, rotation and scale change
of the body domain will be considered.

3. VARIATION OF G1 AND G2 ASSOCIATED WITH TRANSLATION, ROTATION AND SCALE
CHANGE OF BODY DOMAIN

3.1. Translation ofbody domain
Consider the translation of body domain by the infinitesimal vector hcp == c5a, so that

X* == x+ha. (17)

The surface tractions TO and boundary displacements UOare also translated correspond­
ingly, thus

c5TO == 80"0+0"80 == (M+a'k8ak) '0 == 0 on Sr,

8uo == c5iio+U'k8ak == 0 on Su'

The local variations 8tp and oiiP are therefore expressed as follows:

(18)

(19)

The expression (14) for c5G 1 now takes the form

oG 1 == {f[t/Jnk oh Uk + oh O"',kn.] ds-f(Oh - OUn')U'k dSaU; I. aT; IJ J aUj J'. u

-f(:;j + ur)O'jJ.knJ dSr}8ak == {f[t/JbkJ+O'ijUj.k-ajJ.ku7lnJdS}hak (20)

+{f(;~i - aijnJ)Uj.k dSr +f(:;j + uf )O'jJ.knJ dSu}8ak'

The last two integrals of (20) vanish in view of (9), and finally the variation fJG I is expressed
in the form

(k == 1,2,3), (21)
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where

Using the equality
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(22)

(23)

the expression for Z1T can be presented in the equivalent fonn

(24)

containing only gradients of the displacement fields Uj and ufo
THEOREM I: For a linear elastic and homogeneous body, the integral (Z1Th vanishes

for any closed surface within the body, thus

(k = 1,2,3). (25)

To prove this theorem, let us transfonn (22) into a volume integral and use (9)-(12),
obtaining

fl"'bk -a··kuo+a'u·k]n. dS = fl'"k- (akuO) .Y') 'l. I I) I, J 'P. I). I J

(26)

since for a homogeneous body

(27)

Here C denotes the elastic compliance matrix of both the primary and adjoint bodies.
For a non-homogeneous body, the integral (22) according to (21) represents the

variation of the functional G I due to infinitesimal translation of the boundary with respect
to inhomogeneity. Alternatively, we can consider the translation of inhomogeneity or
internal void with the exterior boundary fixed, cf. Fig. 2. In Fig. 2(a), the exterior boundary
does not vary and the void of surface So translates through the distance ba within the
homogeneous material. The variation of G1 can now be calculated from (21) by considering
the integral (22) or (24) along the void surface So. For the free surface So the expression
(24) is simplified, namely

(28)
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y y

0) bl

Fig. 2. (a) Translation of inhomogeneity within the body. (b) Translation of body with respect to
fixed inhomogeneity.

Consider now the arbitrary closed surface S I enclosing the cavity and connect it to the
cavity surface So by the cuts S j and S"3. Since the integral Z~ T taken along the surface
SI+Sj +So+S"3 vanishes and the integrals along Sj and S"3 cancel, we obtain

(29)

The transition from S I to S can be performed by cuts Stand S 2' .
An alternative way to calculate the variation of G I is to consider the translation of the

body domain through the vector c5a with the cavity fixed in space, cf. Fig. 2(b). The transition
from the boundary surface S to an arbitrary closed surface S I enclosing the cavity or to
the cavity surface So is obtained by considering the cuts between these surfaces.

The variation of the functional G2 is expressed similarly as in the previous case.
Introduce the adjoint body of the same shape and elastic stiffness or compliance matrices,
but satisfying the boundary conditions (9) and with imposed body force and initial stress
fields specified by (15). Starting from (16), we obtain

where

(k = 1,2,3).

(30)

(31 )

Thus Z~T is expressed analogously as Z~T with "'(a, u) replaced by 4>(&, u). Theorem
applies for the integral (31) ; thus

(32)

for any closed surface within the homogeneous body.

3.2. Rotation ofbody domain
Consider now the case where the body is rotated in the vicinity of its equilibrium

position, and denote the infinitesimal rotation vector by c5wp• The external tractions and
surface displacements are also rotated correspondingly. The variation of point position is
given by

(33)

and

(34)

where ekpl denotes the permutation tensor. The variation of the unit vector n normal to
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the boundary surface S is expressed as follows, cf. Ref. [16]:

The variation of the displacement field is

On the other hand, when the displacement field is rotated, we have

From (36) and (37), it follows that

(36)

(37)

on Suo (38)

On the loaded boundary, we have

and since

we obtain on ST

ofp = oiiijnj = oTP-(Jjj,kn;OCfJk-(JijOnj = ejp/(Junjowp

- ekp/(Jij,kx/njOWp+ekpj(Jijnkowp = [ejp/(Junj

+ekp/((Ji/nk - X/(Jjj,knj)]OWp'

Using (33)-(41), the expression (14) for oG, can be presented in the form

Assume now that h = h(Uk' Tk ) is an isotropic function of its arguments, thus

(39)

(40)

(41)

(42)

(43)
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where

745

(44)

are invariants of u and T. In view of (43), we have

(45)

Substituting (45) into (42) and accounting for boundary conditions (9), it is seen that
the last two integrals of (42) vanish and the variation bG I can be presented in the form

(46)

where

Using the equalities

(48)

and

(49)

the expression (47) for Z~R can be presented in an equivalent form containing only gradients
of displacement fields Uj and uf, namely

The expression (50) for Z~R can further be transformed into the volume integral

(Z~Rh = ekp/ f[(CT/jun.J+(CTilUf).k-(X/CTjJ.kUf)J-(CTkJU/),J

+ (X/CTIJUi,k)J+ (r/tx/).d dV= ekp/ f[CTljU~J+CTiI.kuf+CTiluf.k

(51)

+ XICT'· ,U'k +X/CT'·U k+ ,I'b/k+eLCT'kX/+!aU/kX/] dV'l.) to 'J I. J Y' IJ 'J, I.

In writing (50), it is assumed that the body considered is homogeneous. Using now
Hooke's law for an isotropic body,

(52)
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where ;. and !1 are Lame constants. we obtain

(53)

and the expression for Z~R takes the form

Assume now that ljJ(a, u) = ljJ \(a)+ ljJ2(U) where ljJ lea) and ljJ2(U) are isotropic functions
of stress and displacement; thus,

(55)

where J b J 2, J 3 are the stress tensor invariants and I. is the displacement vector invariant,
that is

(56)

With these assumptions, the following equalities now occur:

(57)

where

(58)

The expression for Z~R can be presented in the form

(59)

Thus, the following theorem can now be stated.
THEOREM 2: For a linear elastic and isotropic body, the surface integral

(Z~Rh = ekpl f[O"'j~+bjkO"i1Uf-X'O"jj.kUf-O"kjU'+X'O"ijUj.k+bjk"'Xdnj dS (60)

vanishes for any closed surface within the body, provided the adjoint system satisfies (9)
and (10) and the functions", = ljJl(a)+ljJ2(u) and h(u, T) are isotropic functions of their
arguments.
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The variation of the functional G2 is expressed similarly to (46) and (47) with l{I(tT, u)
replaced by eP(e, u) = ¢,(e)+eP2(u), thus

(61)

where Z~Jl is expressed identically as (50) with lj; 1(tT) replaced by eP 1(8).

3.3. Expansion or contraction ofbody domain
In this section, we shall confine ourselves to particular cases of general functionals (l)

and (2). Consider first the transformation

(62)

The matrix of coordinate transformation is now

(63)

The variation of the exterior normal to the boundary surface now vanishes, thus

and the variation of the displacement field is

(65)

so that

(66)

where ~ is a constant to be determined. The variation of strain field follows from (66),
namely

and

out= 0[0 + ~c5,,)u;] = I +~c511 au; ~ [1 + (~-1)c5 ]au; ,
ox! 0[(1 +cj,l)xJ 1+<5'7 ox) - '7 ox)

et = [1 + (e - I)<511]eij, OIl;) = (e - 1)e;)<5'7 = <5eij+Xke;),k<5'7,

The stress variation is expressed similarly, thus

tTt= [1+(e-1)<511]tT;), Mij = [(e-l)tTij-XktT;),k]<511,

Mljnj = [(e -l)tTlj- xkO';j,k]n)<5'7,

(67)

(68)

(69)

Consider now the particular form of the functional 0) for which lj;(tT,u) = lj;j(tT),
h(u, T) = 0, thus

(70)

Assume lj;(tT) to be a homogeneous function of stress of order p; thus,

(71)
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(72)

The constant ~ is now determined by requiring the invariance of t/J d V under the
transformation (62), that is

(73)

where (j(d V) = 3(j1J d V for a three-dimensional case and (j(d V) = 2(j1J d V for the plane
case. In view of (71), the invariance condition for the three-dimensional scale change is
expressed as follows:

Considering only linear terms of (jt}, from (74) we obtain

(74)

Similarly, for the plane case, we have

p-3
~=-.

p
(75)

(76)~ =p-2.
P

The variation of G" is now expressed as follows in the case of three-dimensional
problem:

(77)

where

The eqivalent form of Z,,£ containing only gradients of displacement fields Ui and uf
can be expressed as follows:

(79)

Now, let us demonstrate that the integral (78) vanishes for any closed surface S within
a homogeneous body. Transforming (78) into a volume integral, we obtain

(80)

= 3 f( - ~e:PtJ+t/JI) dV = ~ f( - ~~i~ UtJ+Pt/JI) dV = 0,
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since for a homogeneous function of order p we have

Similarly, for the functional (2), we have

749

(81 )

(82)

where

or Z.E is expressed by (79) with t/J(t1) replaced by ¢(s) and (Z.E)S = o.
Consider now the displacement functional

(83)

(84)

specified over the body domain, where t/J 2(U) is a homogeneous function oforderp. Similarly
to the previous analysis, we have

(85)

Assuming invariance of (t/J 2 d V) under the transformation (62), we obtain the values
of efor the three-dimensional and plane cases, namely

3 2
(e)3d = - p' (e)Plane = - p' (86)

The local variations of boundary displacements on Su and of surface tractions on
Sn in view of (66) and (68), are now expressed as follows for the three-dimensional
transformation:

(87)

and the variation of G can be briefly expressed using the general formula (14), as

(88)

where

(89)

since now O'ljn j = no = 0 on STand uf = 0 on Suo The invariance of (89) for a homogeneous
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linear elastic body is shown by transforming (89) into a volume integral as follows:

3+p ] f( 3 ) 3 f( Ot/J 2 )-P(J;jE:ij-Xk(Jij.kE:ij dV= 3t/J-pffU; dV=p pt/J2-a;;;U, dV=O.

(90)

Similar expressions will be obtained by considering surface displacement and traction
functionals. Consider first the functional

(91)

where hj(T) is assumed to be a homogeneous function of order p. We have

Assume now the invariance of (h j dS) under the transformation (62) and note that

and bedS) = c5l] in the plane case. The first condition (93) implies that

(93)

p-l
(~)Planc = p' (94)

and the variation of (91) takes the form

where

for the three-dimensional case.
Similarly, for the functional

where h 2(u) is a homogeneous function of order p, from (93) we obtain

(95)

(96)

(97)

I
(~)planc = - p' (98)
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(99)

(100)

It is easy to show that (96) and (100) vanish for a linear elastic and homogeneous body. In
fact, transforming (100) into a volume integral, we obtain

(101)

and the identical expression is obtained for the surface integral (96) when (p+2)jp is replaced
by 2jp.

THEOREM 3: For a linear elastic and homogeneous body, the surface integrals (79),
(83), (89), (96) and (100) vanish for any closed surface within the body. The variation of
the respective functionals (70), (82), (84), (91) and (97) associated with the scale change of
the body therefore vanishes.

4. PATH-INDEPENDENT INTEGRALS ASSOCIATED WITH POTENTIAL AND COMPLEMENTARY

ENERGY VARIATIONS

The transition to the case where (1) or (2) coincide with the complementary or potential
energy of the body can be obtained by specifying the adjoint systems and using general
expressions for Zn ZR and Z£. Consider first the particular case when only specified surface
tractions TO or only surface displacements UO expend the work on the body. In the first case,
UO = 0 on Su, T = TO =1= 0 on ST, and the potential and complementary energies are expressed
as follows:

and

nu = f U(s) dV- fp·u dST = - fU(s) dV,

nO' = f W(a) dV- fT'uo dSu = f W(a) dV,

(102)

(103)

where U(s) = !a' s, W(a) = !a' s are the specific stress and strain energies per unit volume.
In the second case, TO = 0 on ST and u = UO =1= 0 on Su, so that

nu = fU(s) dV, nO' = - fW(a) d V. (104)

Setting h(T,u) =0, I/I(a,u)= W(a), and t/J(s,U)= -U(e), the functionals (1) and (2) will
be equivalent to (103) and (102). Similarly, setting I/I(a, u) = - W(a) and t/J(s, u) = U(s) in
(1) and (2), we obtain the functionals (104).

SAS 22:7-'F
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The adjoint system associated with the potential energy fl" for the case u" = 0 on S"
is now specified as follows:

DcjJ <::( - Uj . , /
0'; = - = , = -0' wlthm~. T"I' = 0 on ST, uau = 0 on S".

O/; CS
( 105)

0" = O. 0'" = D'/;" = -0', s" = -/;. u" = -u,

whereas for the case TO = 0 on ST we have

. a</> au 'h' Va' = - = - = 0' Wit In
00' oe '

0" = -0', O'a = 0,

u"o = °on Su,

(106)

In view of (105) and (106), the general expressions for Z~T' ZliR and ZcE given by (31),
(50) and (83) take the following fonus:

(ZliRls = ekp/ f(UX,()kj-O'/jUk-O'/JUi,kX,)nj dS = 0,

(ZtE)S = f(UXkJjk - O'ijUj,kXk - tUjju;)nj dS = 0,

(107)

The relations (107) constitute the set of conservation laws associated with invariance
of the potential energy under translation, rotation and scale change of the domain of a
homogeneous and isotropic body (isotropy is only required in the case ofrotation), Consider
now the complementary energy nu ' The adjoint system for the case UO = 0 on Su is now
specified as follows:

. aljJ oW . h' V T 0 Se' = - = - =e Wit In , °0 = on T,
00'00'

0" = 0,

whereas for the case TO =°on Sr we can write

(108)

. oljJ o( - W) , h' T 0 Sel = - = = -8 wIt In V °0 = on T,
00' 00' '

0" = 0', O'a =0,
(109)

(110)

Using now (108) and (l09) in the general expressions for Z~T' Z~R and Z,,£ derived in
the previous section, we obtain the conservation laws associated with the invariance of the
complementary energy under translation, rotation and expansion of the domain of a
homogeneous and isotropic body, namely

(Z~Th = f(- WJkj+O'ijUj,k)nj dS = 0,

(Z~Rh = ekp'f(- WX,bkj+O'/jUk+UjjUj,kx,)nj dS = 0,
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Let us note that the conservation laws (107) and (110) are respectively equivalent to
those derived earlier by Giinther[3], Eshelby[l, 2], Knowles and Sternberg[4] and Bui[14].

It can be shown that the same path-independent functionals and conservation rules
are obtained in the case of translation and rotation of the body when mixed boundary
conditions with non-vanishing UO and TO on Su and ST are assumed.

5. CONSERVATION RULES FOR BILINEAR FUNCfIONALS

Bilinear functionals are useful in assessing the variation of local displacement or stress
components due to shape variation. It was shown in Ref. [20] that they can be generated
as singular cases of (I) and (2) assuming localized force or dislocation action on the adjoint
body. However, it is convenient to consider this class of functionals separately. Consider a
linear elastic body loaded by surface traction fields T? and T~ on Sn and with specified
displacements u? and ug on Su, respectively. Denote the corresponding state fields by 0'1, 8),
UI and 0'2, 82' U2 satisfying conditions ofequilibrium, compatibility and constitutive relations.
Consider now the functionals, cf. Shield and Prager[21],

B, =f~0'1'82 dV+f~ 0'2'8, dV-fT?'U2 dST - fTg'uI dST

= f0(8,,82) dV-fT?'U2 dST - fTg'ut dST,

and

B2 = f~0'1'82 dV+ f~0'2'81 dV- fT"ug dSu - fT 2 'U? dSu

=fW(0"'0'2) dV- fT\'Ug dSu - fT 2'U? dSu ,

(111 )

(112)

where 0(8\l82) = 81'D'82 = 82'D'8\ and W(O'\l 0'2) = 0'1'C'0'2 =
specific mutual strain and stress energies, so that

(113)

The variation of B 1 due to shape variation is expressed similarly to (6), namely

oBi = f(:~. oil + :~ 'Oi2) dV+fOnkOqJk dS-foT? 'U2 dST

- fT?' (002 +U2.kOqJk) dST - foTg· Ul dST

- fT~'(OOI+UI.kOqJk) dST

-f(T? . U2 +T~' UI) (Okl- n~/)OqJk.1 dST•

(114)
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Using the virtual work equation, we obtain

bBI = f(Ollk-TI·U2.k-T2·U"db<Pk dS

- f(T~'U2+n'UI)(bk,-nknl)b<Pk'/ dST

- fbT~'U2 dST - fbT~'UI dST +fT"bU~ dSw+fT2'bU~dSw,

(115)

and a similar expression is obtained for the functional B2:

bB2= f(- Wnk+T,'U2,k+T2'UI,k)b<Pk dS

+ f(T?'U2+Tg'Ul)(bkl-nkn/)b<Pk,/ dST + fbT?'U2 dST (116)

+ f bTg 'UI dST - f T, 'bug dSw- f T 2'bu? dSw'

Consider now the translation of body domain: b<Pk = bak = const., bU? = bug = 0 on
Sw, bT? = bTg = 0 on ST- Similarly to (21), from (115) it follows that

(117)

where

and (Mhh = 0 for any closed surface S within a homogeneous elastic body. It is seen that
(118) is identical to (22) and also to the path-independent integral derived by Chen and
Shield[18]. Similarly, the variation of B 2 is expressed as follows:

(119)

where the path-independent integral is expressed as

(120)

and it is equivalent to (31),
The case of rotation can be treated similarly as before, and the path-independent

integrals are specified by (50). It is thus seen that the variations of the bilinear functionals
are expressed in terms of the same path-independent integrals as the variations of GI
and G2•

6, ON APPLICATION OF PATIi-INDEPENDENT INTEGRALS

The derived path-independent integrals can be applied in sensitivity analysis with
respect to translation, rotation or expansion of internal defects such as cracks, cavities or
inclusions. In fact, the functionals (1) and (2) can be given different interpretations depend-
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ing on the type of problem considered. For instance, they can represent local or averaged
stress measure or distance norm between measured and theoretical values of strains and
displacements within the body. Thus, these functionals can be used in identification of the
positions and sizes of defects based on available measurement data. Enclosing the defect
by a surface Sj, the variation of any functional G 1 or Gzcan be determined by calculating
the respective path-independent integral along any surface Sj including the defect surface
So or the external boundary surface S. Another application, already indicated in Refs. [18,
19], would be associated with separating and determining mixed-mode singularities at crack
tips.

We will now illustrate the applicability of the derived conservation rules by considering
two simple examples.

Example 1. Consider a thin circular disk ofexternal radius b and with an internal hole
of radius a, loaded by the pressure p at the external perimeter r = b. The stress and
displacement states within the disk referred to the polar coordinate system r, 8 are as
follows:

k [ a
2

]U, = - E, (1 +v);:I + (I-v) , U/J = 0,

(121)

where E and v denote Young's modulus and Poisson's ratio, respectively. We consider now
the functional

(122)

and determine its variation associated with an expansion of the internal hole. According to
(77) and (78), this variation can be expressed by a path-independent integral over the
external perimeter. In the two-dimensional case, we have p = 2, ~ = 0, and

(123)

The adjont body is subject to the initial strain field

, oIjJ (3a 2
) , oIjJ (3a 2

)
s~ = o(J, = 2(J,-(J/J = k 7 - 1 , So = O(J/J = 2(J/J-(J, = -k 7 + I , (124)

with the boundary conditions T~(b) = (J~(b) = 0, T~(a) = (J~(a) = O. The solution of the
adjoint problem provides the stress, strain and displacement fields

(3a2
)sZ = -k 7 + 1 ,

and

(3a2
)

~= -kr 7+ 1, t4 = 0, (J~ = 0, (Je = 0,

(125)

(126)

since fJa = - afJ'1, where fJa > 0 corresponds to the expansion of hole.
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When the displacement functional

G = fll(U) dA = ~fU; dA (127)

is considered, the adjoint structure is loaded by the body force field

ah
f a - - U,-;;--- "

uU,
13=0, (128)

and, according to (88) and (89), the variation of (127) is expressed by a surface integral
over the external perimeter; thus,

(129)

where the displacement field for the adjoint body is obtained in the form

Example 2. This example is related to generalization of the J-integral in fracture
mechanics[12-14] associated with the potential energy release rate due to crack propagation.
Consider a plane strain or stress case and a notch or crack with flat boundary portions
oriented along the x-axis, cf. Fig. 3. For a curve 1 enclosing the notch tip and ending on
flat notch surfaces, the integral (24) can be expressed as follows:

f f( au· au)
(ZIT)r= (l/!-a's")dy+ T' ox +T·'ox ds, (131)

where ds is the arc length element of 1 and dy denotes its projection on the y-axis of the
x,y-Cartesian coordinate system. Similarly as for the J-integral[12], it is easy to prove path
independence of this integral. In fact, considering any other curve l' ending at 3 and 4 on
the flat notch portions, the integral over the whole closed path 11_2+2-4+1'4-3+3-1
vanishes in view of Theorem 1 since this path encloses the homogeneous material. Moreover,
on flat portions 2-3 and 1-4 we have dy = 0, T = r = 0 and the expression in (131)
vanishes on these portions. Thus, (ZlT)r = (ZlT)r" and the integral (131) is path­
independent. A similar property occurs for the integral (Z~T)r specified by (31). Now, if the
path coincides with the curvilinear portion 1 0 of the notch tip, the integral (131) takes the
form

(132)
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Fig. 3. Path-independent integral for a notched body in plane case: (a) body with a notch;
(b) adjoint body subjected to initial strain field ai.

and the variation of the functional (1) is given by

(133)

where aa denotes the infinitesimal translation of the notch tip along the x-axis. The familiar
property of the J-integral associated with the potential energy variation is now preserved
for any stress, strain or displacement functional.

Consider, for instance, the case where the external boundary of the body coincides
with the x- and y-axes, cf. Fig. 3. Assume the boundaries AD and EF to be free and DE, AF
to be loaded by normal tractions. When the second term of (I) is neglected and t/! = t/!«(1),
the adjoint body is subjected to the initial strain field £i specified by (10) with vanishing
surface tractions To on the boundary. The integral (131) now takes the form

(Zlr).wEF = r [t/!(CTy)-CTy&~] dy-f [t/!(CTy)-CTy&~]dy+ r Ty~u~ dx+ f Ty~u~ dx.
JEF AD JDE uX AF uX

(134)

When the body is subjected to a uniformly distributed displacement on DE and AF, then
iJu~/iJx = 0 and only two terms of (134) remain.

Whereas previous research effort in fracture mechanics was concentrated primarily on
determining the variation of the potential energy associated with crack growth, the present
method provides tools to determine variation of any functional of stress, strain or dis­
placement. One class of functionals is associated with the problem of identification of
damage or crack position and orientation. The two p.xamples presented illustrate the idea
that by calculating path-independent integrals along fixed contours, far from singularities,
the variation of respective functionals can be assessed.

7. CONCLUDING REMARKS

In the present work, a new class of conservation laws and path-independent integrals was
discussed. This class is associated with variation of arbitrary stress, strain and displacement
functionals due to infinitesimal translation, rotation or scale change of an inhomogeneity
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within the elastic body. The analysis was limited to linearly elastic material within small
strain theory but the extension to non-linear case is possible by following the work on
sensitivity analysis in non-linear elasticity[17]. Similarly as I-integral in fracture mechanics
the derived path-independent integrals 21 Tor 2;T can be applied in studying variation of
any functional due to extension of plane cracks. The bilinear functionals discussed in Section
5 provide the same path-independent integrals with proper interpretation of the adjoint
system. Their application was indicated in Refs. [18, 19] to problems of determining
stress intensity factors at crack tips for mixed mode conditions.

REFERENCES

I. J. D. Eshelby, The continuum theory of lattice defects. Solid State Physics (Edited by F. Seitz and D.
Turnbull), Vol 3, p. 79. Academic Press, New York (1956).

2. J. D. Eshelby, Energy relations and energy momentum tensor in continuum mechanics. In Inelastic Behaviour
ofSolids (Edited by M. F. Kanninen et al.), pp. 77-115. McGraw-Hill, New York (1970).

3. W. Gunther, Ober einige Randintegral der Elastomechanik. Abh. Braunschweig Wiss. Geselsch. 14, 54-63
(1962).

4. J. K. Knowles and E. Sternberg, On a class of conservation laws in linearized and finite elastostatics. Arch.
Rat. Mech. Anal. 44,187-21 (1972).

5. D. C. Fletcher, Conservation laws in linear elastodynamics. Arch. Rat. Mech. Anal. 60,329-353 (1976).
6. E. Noether, Invariante Variationsprobleme, Naehr. Ges. Gottingen, Math. Phys. Klasse 2,235 (1918).
7. A. G. Herrmann, On conservation laws of continuum mechanics. Int. J. Solids Struct. 17, 1-9 (1981).
8. G. Francfort and A. G. Herrmann, Conservation laws and material momentum in thermoelasticity. J. Appl.

Mech. 49, 710-714 (1982).
9. T. J. Delph, Conservation laws in linear elasticity based upon divergence transformation. J. Elasticity 12,

385-393 (1982).
10. T. J. Delph, Conservation laws for materials exhibiting power-law creep. Int. J. Solids Struct. 19,907-913

(1983).
II. G. Herrmann, Some applications of invariant variational principles in mechanics of solids. In Variational

Methods in the Mechanics of Solids (Edited by S. Nemat Nasser), pp. 145-150. Pergamon Press, Oxford
(1980).

12. J. R. Rice, A path-independent integral and the approximate analysis of strain concentrations by notches and
cracks. J. Appl. Mech. 35, 379-386 (1968).

13. B. Budiansky and J. R. Rice, Conservation laws and energy release rates. J. Appl. Meeh. 40, 201-206 (1974).
14. H. D. Bui, Dual path-independent integrals in the boundary-value problems of cracks. Engng Fract. Mech.

6,287-296 (1974).
15. K. Dems and Z. Mr6z, Variational approach by means of adjoint systems to structural optimization and

sensitivity analysis-I. Variation of material parameters within fixed domain. Int. J. Solids Struct. 19, 677­
692 (1983).

16. K. Dems and Z. Mr6z, Variational approach by means of adjoint systems to structural optimization and
sensitivity analysis-II. Structure shape variation. Int. J. Solids Struct. 20, 527-552 (1984).

17. G. Szefer, Z. Mr6z and L. Demkowicz;Variational approach to sensitivity analysis in non-linear elasticity.
Arch. Mech. Submitted for publication.

18. F. H. K. Chen and R. T. Shield, Conservation laws in elasticity of the J-integral type. J. Appl. Math. Phys.
(ZAMP) 28,1-22 (1977).

19. H. D. Bui, Associated path-independent J-integrals for separating mixed mode. J. Mech. Phys. Solids 31,
439-448 (1983).

20. K. Oems and Z. Mr6z, Variational approach to first and second-order sensitivity analysis of elastic structures.
Int. J. Num. Me/h. Engng 21, 637-661 (1985).

21. R. T. Shield and W. Prager, Optimal structural design for given deflection. Z. Angeli'. Math. Phys. 21, 513­
523 (1970).


